Translator

Eksponen dan Logaritma

Eksponen

Eksponen adalah perkalian yang diulang-ulang. Orang menulis eksponen dengan indeks di atas, yang akan terlihat sebagai berikut: xy. Terkadang hal itu tak mungkin. Kemudian orang menulis eksponen menggunakan tanda ^: 2^3 berarti 23.
Bilangan x disebut bilangan pokok, dan bilangan y disebut eksponen. Sebagai contoh, pada 23, 2 adalah bilangan pokok dan 3 eksponen.
Untuk menghitung 23 seseorang harus mengalikan 3 kali terhadap angka 2. Sehingga 2^3=2 \cdot 2 \cdot 2. Hasilnya adalah 2 \cdot 2 \cdot 2=8. Apa yang dikatakan persamaan bisa juga dikatakan dengan cara ini: 2 pangkat 3 sama dengan 8.
Contoh:
  • 5^3=5\cdot{} 5\cdot{} 5=125
  • x^2=x\cdot{} x
  • 1x = 1 untuk setiap bilangan x
Jika eksponen sama dengan 2, maka disebut persegi karena area persegi dihitung menggunakan a2. Sehingga
x2 adalah persegi dari x
Jika eksponen sama dengan 3, maka disebut kubik karena volume kubus dihitung dengan a3. Sehingga
x3 adalah kubik x
Jika eksponen sama dengan -1 orang harus menghitung inversi bilangan pokok. Sehingga:x^{-1}=\frac{1}{x} Jika eksponen adalah integral dan kurang dari 0, orang harus membalik bilangan dan menghitung pangkat. Sebagai contoh:
2^{-3}=(\frac{1}{2})^3=\frac{1}{8}
Jika eksponen sama dengan \frac{1}{2} hasilnya adalah akar persegi bilangan pokok. Sehingga x^{\frac{1}{2}}=\sqrt{x}. Contoh:
4^{\frac{1}{2}}=\sqrt{4}=2
Dengan cara yang sama, jika eksponen \frac{1}{n} hasilnya adalah akar ke-n, sehingga:
a^{\frac{1}{n}}=\sqrt[n]{a}
Jika eksponen merupakan bilangan rasional \frac{p}{q}, hasilnya adalah akar ke-q bilangan pokok yang dipangkatkan p,
Eksponen bisa juga tak rasional. Untuk menjadikan bilangan pokok a menjadi pangkat ke-x yang tak rasional, kita menggunakan rangkaian ketidakterhinggaan bilangan rasional (xi), yang limitnya adalah x:
x=\lim_{n\to\infty}x_n
seperti ini:a^x=\lim_{n\to\infty}a^{x_n}
A. Sifat eksponen
  • \left(a\cdot b\right)^n = a^n\cdot{}b^n
  • \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n},\quad b\neq 0
  • a^r \cdot{} a^s = a^{r+s}
  • \frac{a^r}{a^s} = a^{r-s},\quad a\neq 0
  • a^{-n} = \frac{1}{a^n},\quad a\neq 0
  • \left(a^r\right)^s = a^{r\cdot s}
  • a^0 = 1,\quad a\neq 0: Bila bilangan pokok lebih besar daripada 1 dan eksponen 0, jawabannya 1. Jika bilangan pokok dan pangkat sama dengan 0, jawabannya tak terdefinisikan.
Ekponen matriks bisa pula dihitung. Matriks itu harus persegi. Sebagai contoh: I^2=I \cdot I=I

Persamaan Ekoponen
Adalah persamaan yang didalamnya terdapat pangkat yang berbentuk fungsi dalam x (x sebagai peubah).
[Ket. : Usahakan setiap bilangan pokok ditulis sebagai bilangan berpangkat dengan bilangan dasar 2, 3, 5, 7, dst].
 BENTUK-BENTUK
A. af(x) = ag(x) ® f(x) = g(x)

    ® Samakan bilangan pokoknya
sehingga pangkatnya dapat        disamakan.
contoh :
2 SUKU ® SUKU DI RUAS KANAN, 1 SUKU DI RUAS KIRI
  1. Ö(82x-3) = (32x+1)1/4
    (23)(2x-3)1/2 = (25)(x+1)1/4
    2(6x-9)/2 = 2(5x-5)/4
    (6x-9)/2 = (5x-5)/4
    24x-36 = 10x+10
    14x = 46
    x = 46/14 = 23/7

  2. 3x²-3x+2 + 3x²-3x = 10
    3².3x²-3x+3x²-3x = 10
    9. 3x²-3x + 3x²-3x = 10
    10. 3x²-3x = 10
    3x² - 3x = 30
    x² - 3x = 0
    x(x-3) = 0
    x1 = 0 ; x2 = 3


3 SUKU ® GUNAKAN PEMISALAN
  1. 22x + 2 - 2 x+2 + 1 = 0
    22.22x - 22.2x + 1 = 0
    Misalkan : 2x = p
                  22x = (2x)² = p²
    4p² -4p + 1 = 0
    (2p-1)² = 0
    2p - 1 = 0
    p =1/2
    2x = 2-1
    x = -1

  2. B. af(x) = bf(x) ® f(x) = 0
Bilangan pokok berbeda, pangkat sama. Pangkatnya = 0.
Contoh:
  1. 3x²-x-2 = 7x²-x-2
    x² - x -2 = 0
    (x-2)(x+1) = 0
    x1 = 2 ; x2 = -1

C. af(x) = bf(x) ® f(x) log a = g(x) log b
Bilangan pokok berbeda, pangkat berbeda. Diselesaikan dengan menggunakan logaritma.
Contoh:
  1. 4x-1 = 3x+1
    (x-1)log4 = (x+1)log3
    xlog4 - log4 = x log 3 + log 3
    x log 4 - x log 3 = log 3 + log 4
    x (log4 - log3) = log 12
    x log 4/3 = log 12
    x log 4/3 = log 12
    x = log 12/ log 4/3 = 4/3 log 12

D. f(x) g(x) = f(x) h(x)

    
® Bilangan pokok (dalam fungsi) sama, pangkat berbeda.Tinjau        beberapa kemungkinan.
  1. Pangkat sama g(x) = h(x)

  2. Bilangan pokok f(x) = 1           ket: 1g(x) = 1h(x) = 1

  3. Bilangan pokok f(x) = -1
    Dengan syarat, setelah nilai x didapat dari f(x)=-1 , maka nilai
    pangkatnya yaitu g(x) dan h(x) kedua-duanya harus genap atau kedua-duanya harus ganjil.

    ket :
    g(x) dan h(x) Genap : (-1)g(x) = (-1)h(x) = 1
    g(x) dan h(x) Ganjil : (-1)g(x) = (-1)h(x) = -1


  4. Bilangan pokok f(x) = 0
    Dengan syarat, setelah nilai x didapat dari f(x) = 0, maka nilai pangkatnya yaitu g(x) dan h(x) kedua-duanya harus positif.

    ket : g(x) dan h(x) positif ® 0g(x) = 0h(x) = 0

Contoh:
(x² + 5x + 5)3x-2 = (x² + 5x + 5)2x+3
  1. Pangkat sama
        3x - 2 = 2x + 3 ® x1 = 5

  2. Bilangan pokok = 1
    x² + 5x + 5 = 1
    x² + 5x + 4 = 0
    ® (x-1)(x-4) = 0 ® x2 = 1 ; x3 = 4

  3. Bilangan pokok = -1
    x² - 5x + 5 = -1
    x² - 5x + 6 = 0
    ® (x-2)(x-3) = 0 ® x = 1 ; x = 4

    g(2) = 4 ; h(2) = 7 ; x=2 tak memenuhi karena (-1)4 ¹ (-1)7
    g(3) = 7 ; h(3) = 9 ; x4 = 3 memenuhi karena (-1)7 = (-1)9 = -1

 Logaritma
  1. Logaritma adalah operasi matematika yang merupakan kebalikan dari eksponen atau pemangkatan.
    Rumus dasar logaritma:
    bc= a ditulis sebagai blog a = c (b disebut basis)
    Beberapa orang menuliskan blog a = c sebagai logba = c
  • Notasi
  1. Di Indonesia, kebanyakan buku pelajaran Matematika menggunakan notasi blog a daripada logba. Buku-buku Matematika berbahasa Inggris menggunakan notasi logba
  2. Beberapa orang menulis ln a sebagai ganti elog a, log a sebagai ganti 10log a dan ld a sebagai ganti 2log a.
  3. Pada kebanyakan kalkulator, LOG menunjuk kepada logaritma berbasis 10 dan LN menunjuk kepada logaritma berbasis e.
  4. Pada beberapa bahasa pemrograman komputer seperti C,C++,Java dan BASIC, LOG menunjuk kepada logaritma berbasis e.
  5. Terkadang Log x (huruf besar L) menunjuk kepada 10log x dan log x (huruf kecil L) menunjuk kepada elog x
Rumus Logaritma
r
ac = b → ª log b = c
a = basis
b = bilangan yang dilogaritma
c = hasil logaritma
Sifat-sifat Logaritma
ª log a = 1
ª log 1 = 0
ª log aⁿ = n
ª log bⁿ = n • ª log b
ª log b • c = ª log b + ª log c
ª log b/c = ª log b – ª log c
ªˆⁿ log b m = m/n • ª log b
ª log b = 1 ÷ b log a
ª log b • b log c • c log d = ª log d
ª log b = c log b ÷ c log a
Persamaan Logaritma
Adalah persamaan yang didalamnya terdapat logaritma dimana numerus ataupun bilangan pokoknya berbentuk suatu fungsi dalam x.
Masalah : Menghilangkan logaritma
alog f(x) = alog g(x) ® f(x) = g(x)
alog f(x) = b ® f(x) =ab
f(x)log a = b ® (f(x))b = a
Dengan syarat x yang didapat dari persamaan tersebut harus terdefinisi. (Bilangan pokok > 0 ¹ 1 dan numerus > 0 )
Contoh:
Tentukan nilai x yang memenuhi persamaan berikut !
  1. xlog 1/100 = -1/8
    x-1/8 = 10-2
    (x -1/8) -8 = (10-2)-8
    x = 10 16

  2. xlog 81 - 2 xlog 27 + xlog 9 + 1/2 xlog 729 = 6
    xlog 34 - 2 xlog33 + xlog² + 1/2 xlog 36 = 6
    4 xlog3 - 6 xlog3 + 2 xlog3 + 3 xlog 3 = 6
    3 xlog 3 = 6
    xlog 3 = 2
    x² = 3 ® x = Ö3 (x>0)


  3. xlog (x+12) - 3 xlog4 + 1 = 0
    xlog(x+12) - xlog 4³ = -1
    xlog ((x+12)/4³) = -1
    (x+12)/4³ = 1/x
    x² + 12x - 64 = 0
    (x + 16)(x - 4) = 0
    x = -16 (TM) ; x = 4


  4. ²log²x - 2 ²logx - 3 = 0

    misal :   ²log x = p

    p² - 2p - 3 = 0
    (p-3)(p+1) = 0

    p1 = 3
    ²log x = 3
    x1 = 2³ = 8

    p2 = -1
    ²log x = -1
    x2 = 2-1 = 1/2